
Math 309 Homework 8
(5 problems)

1. Consider the conduction of heat in a rod of length π cm. It’s ends are insulated for all t > 0, i.e.
the temperature distribution u(x, t) satisfies the boundary conditions ∂u

∂x(0, t) = ∂u
∂x(π, t) = 0.

Suppose that α2 = 1. Find an expression for the u(x, t) if the initial temperature distribution
in the rod is u(x, 0) = sin2 x.
Hint: the identity sin2 x = 1

2(1− cos(2x)) may come in handy towards the very end.

2. Consider the conduction of heat in a rod 40cm in length whose ends are maintained at 0◦C for
all t > 0. Suppose that α2 = 3. Find an expression for the temperature u(x, t) if the initial
temperature distribution in the rod is

u(x, 0) =

{
x, 0 ≤ x < 20
40− x, 20 ≤ x ≤ 40

3. Consider the conduction of heat in a rod of length π cm and whose ends are maintained at
temperatures u(0, t) = 0 and u(π, t) = −π2. Suppose that α2 = 1. Find an expression for the
u(x, t) if the initial temperature distribution in the rod is u(x, 0) = −x2.

4. The motion of a circular elastic membrane, such as a drumhead, is governed by the two dimen-
sional wave equation for u(r, θ, t) in polar coordinates

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
=

1

a2
∂2u

∂t2
.

Assuming that u(r, θ, t) = R(r)Θ(θ)T (t), find ordinary differential equations satisfied byR(r),Θ(θ),
and T (t).

5. (Root cellars, continuation of HW7 #1) If you don’t want to read the whole set-up, you can just
read the first two paragraphs (i.e. till the end of page 1 of this pdf file) and the general solution
for u(x, t) (i.e. top of page 3). That’s all you need in order to work on the questions listed at
the end.

We are interested in the ground temperature u(x, t) at time t and depth x, i.e. x is the vertical
position that is 0 on the surface and positive going underground. The temperature on the sur-
face, u(0, t) = f(t), is a periodic function with period equals to 1 year. For convenience, let us
use a unit of time such that 1 year is equal to 2π time units, so f(t) is 2π-periodic.

We consider the scenario where the temperature at depth x is only affected by the heat conducted
from above ground (e.g. by only considering small x, so we don’t go deep into the Earth to
experience any of its internal heat). Then at each fixed depth x, u(x, t) should also be some
2π-periodic function of t since it is only affected by heat coming from above ground. , so we can
write it as a Fourier series, i.e.

u(x, t) = a0(x) +
∞∑
n=1

[an(x) cos(nt) + bn(x) sin(nt)] .
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(Note for each fixed x, the Fourier coefficients an(x) and bn(x) are constants. As x changes,
u(x, t) becomes different functions of t, so the coefficients changes with x.) From what we learned
about the Fourier series,

an =
1

π

∫ π

−π
u(x, t) cos(nt)dt, and bn =

1

π

∫ π

−π
u(x, t) sin(nt)dt.

Now this temperature u(x, t) is governed by the heat equation

∂u

∂t
=
∂2u

∂x2

(here for simplicity we took the constant in the heat equation to be α2 = 1).

By differentiating under the integral sign and using the heat equation, we get that

a′′n(x) =
1

π

∫ π

−π

∂2u

∂x2
(x, t) cos(nt) dt

=
1

π

∫ π

−π

∂u

∂t
(x, t) cos(nt) dt

=
n

π

∫ π

−π
u(x, t) sin(nt) dt

=

{
n bn(x), if n ≥ 1

0, if n = 0 (so that a0 = αx+ β).

A similar calculation shows that
b′′n(x) = −nan.

Hence we have the following system of ordinary differential equations{
a′′n = nbn

b′′n = −nan.

Note that, except for the notation difference, this is exactly the system we solved in HW7 #1,
and there we found the general solution to be

an(x) = e
√

n
2
x
[
αn cos(

√
n
2 x) + βn sin(

√
n
2 x)

]
+ e−

√
n
2
x
[
γn cos(

√
n
2 x) + δn sin(

√
n
2 x)

]
bn(x) = e

√
n
2
x
[
−αn sin(

√
n
2 x) + βn cos(

√
n
2 x))

]
+ e−

√
n
2
x
[
γn sin(

√
n
2 x)− δn cos(

√
n
2 x)

]
,

where αn, βn, γn, δn are arbitrary constants.

Recall that we are only considering the scenario where the temperature at depth x is only affected
by the heat conducted from above ground, so we can assume that |u(t, x)| is always less than
the maximum temperature on the surface, which implies that αn = βn = 0 for all n and that
a0(x) = γ0 is constant (that is, the average temperature is constant). Thus the Fourier series of
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u(x, t) is:

u(x, t) = γ0 +
∞∑
n=1

γne
−
√

n
2
x
[
cos(

√
n
2 x) cos(nt) + sin(

√
n
2 x) sin(nt)

]
+

∞∑
n=1

δne
−
√

n
2
x
[
− cos(

√
n
2 x) sin(nt) + sin(

√
n
2 x) cos(nt)

]
= γ0 +

∞∑
n=1

e−
√

n
2
x
[
γn cos

(
nt+

√
n
2 x
)

+ δn sin
(
nt+

√
n
2 x
)]
.

We see that the γn and δn are the Fourier coefficients of the surface (x = 0) temperature
function f(t). The above solution shows that going deeper underground has an exponential
damping effect, and in addition to that, there is also a phase shift!

(a) Suppose u(0, t) = f(t) = cos t. At depth x = 0, what is the hottest (summer) time
t0 ∈ [0, 2π)? What is the coldest (winter) time t1 ∈ [0, 2π)?

(b) Find the particular solution u(x, t) such that u(0, t) = f(t) = cos t.

(c) Use the solution you found in part (b), at a fixed depth x, what is the hottest time t ∈ [0, 2π)
at this depth? What is the coldest time t ∈ [0, 2π) at this depth? You will see that as
the depth changes, the hottest/coldest times don’t exactly match with the summer/winter
time you found in part (a); there is a phase shift.

(d) If you are storing root vegetables in the root cellar, you would like to take advantage of this
phase shift to have the temperature in the cellar be as cool as possible in the heat of the
summer. Using the solution you found in part (b) and your analysis in part (c), what is
the smallest depth x such that t0 is the coolest time at this depth, where t0 is the summer
time you found in part (a). Note that this part (d) is not asking for the coolest depth at
time t0 (it’s asking for the depth such that t0 is the coolest time at that depth, note the
subtlety in the wording).

(e) Find the coolest depth at time t0, i.e. find x0 such that it is a minimum of u(x, t0).
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