
Math 309 Homework 3
(6 problems)

1. For simplicity, in this problem you can assume x(t) is a scalar valued function, i.e. not vector
valued, (though everything here works in exactly the same way even if x(t) is a vector valued
function).

(a) Show that if x(1)(t) and x(2)(t) are solutions to a homogeneous linear first order equa-
tion, i.e. an equation of the form x′ = p(t)x, then x(t) = c1x

(1)(t) + c2x
(2)(t) is also a

solution to x′ = p(t)x.

(b) Now suppose x(1)(t) and x(2)(t) are nonzero solutions to the following homogeneous, but
nonlinear, first order equation,

x′ = x2.

Show that x = x(1)(t) + x(2)(t) is not a solution to the above equation x′ = x2.

(c) Now suppose x(1)(t) and x(2)(t) are solutions to the following linear, but nonhomoge-
neous, first order equation,

x′ = x+ 2.

Show that x = x(1)(t) + x(2)(t) is not a solution to the above equation x′ = x+ 2. This
x is actually a solution to a different equation, and what is that equation?

2. (Continuation of HW2 #3) In HW2, #3, we solved the below system of equations,

x′1 = x1 − 2x2
x′2 = 3x1 − 4x2

,

by writing this system as a single 2nd order equation and solving that 2nd order equation
first.

(a) Now forget about writing the system as a 2nd order equation. Just find the general
solution to the above first order system x′ = Ax directly by finding the eigenvalues and
eigenvectors fo the coefficient matrix A.

(b) Describe the behaviors of the solution as t→∞ and as t→ −∞, (i.e. are solutions x(t)
going to 0 or ∞?)

(c) Draw a few trajectories of solutions in the x1-x2 plane. Draw the trajectories parallel
to the eigenvectors and also include a couple of trajectories that are not parallel to the
the eigenvectors. Indicate the direction of flow by drawing an arrow on each trajectory.

3. (Continuation of HW3 #2)

(a) Find the solution to the above system of equations given the following initial condition

x(0) =

[
−1
−2

]
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(b) Plot the point x(0) on the x1-x2 plane.

(c) Draw the trajectory of the solution to part (a) on the x1-x2 plane for t ∈ [0,∞). Indicate
the direction of flow.

(d) Plot the point x(1) on your drawing in part (c).

4. (Rolling down a potential hill, a continuation of HW2 #6) In HW2, #6b, we wrote down the
following system describing the motion of the particle[

x′

p′

]
= A

[
x
p

]
, where A =

[
0 1/m

2/5 0

]
.

(a) Find the general solution,

[
x(t)
p(t)

]
, to this system by finding the eigenvalues and eigen-

vectors of A. (The answer you get in the end should be the same as that in HW2 #6a.)

(b) Suppose x(0) = 0 and p(0) = 0. Find the solution

[
x(t)
p(t)

]
subject to this initial condi-

tion.

(c) Again x(0) = 0 and p(0) = m (i.e. initial velocity points to the right). Find the solution[
x(t)
p(t)

]
subject to this initial condition.

(d) What is the behavior of the solution in part (c) as t→∞? (That is, are solutions going
to 0 or ∞?)

(e) Let m = 1. Draw the trajectory of solution in part (c) for for t ∈ [0,∞) in the x-p plane
and remember to indicate the direction of flow.

5. (Pendulum, a continuation of HW1 #8) In HW1 #8, we discussed that the equation of motion
for a frictionless pendulum of bob mass m and rod length L is

θ′′(t) = − g
L

sin θ.

This is a nonlinear equation, and we linearized it in HW1 by considering very small θ ≈ 0,
in which case sin θ ≈ θ.
Now let’s linearize it near a different point by considering θ ≈ π, so the bob of the pendulum
is near the very top as pictured below. In this case, by considering a Taylor expansion of sin θ
around π, we get that sin θ ≈ −(θ− π). Then we get that for θ ≈ π, we can approximate the
above nonlinear equation by the following linearized equation

θ′′(t) =
g

L
(θ − π).

Now let θ̃ = θ − π, so when θ = π, we have θ̃ = 0. Then the above equation becomes

θ̃′′ =
g

L
θ̃.

For the rest of this problem, we only consider this very last linearized equation in θ̃.
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θ

L

m

(a) Denote by ω(t) = dθ(t)
dt . Write the above linearized equation in θ̃ as a system of first

order equations [
θ̃′

ω′

]
= A

[
θ̃
ω

]
.

(b) Find the general solution to the system in part (a) by finding the eigenvalues and
eigenvectors of A.

(c) Now set g
L = 1. Draw a few trajectories of solutions in the θ̃-ω plane. Draw the

trajectories parallel to the eigenvectors and also include a couple of trajectories that are
not parallel to the the eigenvectors. Indicate the direction of flow by drawing an arrow
on each trajectory.

(d) Again keep g
L = 1. Draw the trajectory determined by the initial condition θ̃(0) = 0

and ω(0) = 1 for t ∈ [0,∞) in the θ̃-ω plane. Then on the same plane, also draw the
trajectory determined by the initial condition θ̃(0) = 0.3 and ω(0) = 0 for t ∈ [0,∞)

6. Consider the following system

x′ =

[
2 −1
3 −2

]
x.

(a) Find the general solution by finding the eigenvalues and eigenvectors of the coefficient
matrix.

(b) Draw a few trajectories of solutions in the x1-x2 plane. Draw the trajectories parallel
to the eigenvectors and also include a couple of trajectories that are not parallel to the
the eigenvectors. Indicate the direction of flow by drawing an arrow on each trajectory.

(c) Draw the trajectory determined by the initial condition x1(0) = 2 and x2(0) = 1 for
t ∈ [0,∞) in the x1-x2 plane.
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