Math 309 Homework 3 (6 problems)

- 1. For simplicity, in this problem you can assume x(t) is a scalar valued function, i.e. not vector valued, (though everything here works in exactly the same way even if x(t) is a vector valued function).
 - (a) Show that if $x^{(1)}(t)$ and $x^{(2)}(t)$ are solutions to a homogeneous linear first order equation, i.e. an equation of the form x' = p(t)x, then $x(t) = c_1 x^{(1)}(t) + c_2 x^{(2)}(t)$ is also a solution to x' = p(t)x.
 - (b) Now suppose $x^{(1)}(t)$ and $x^{(2)}(t)$ are nonzero solutions to the following homogeneous, but nonlinear, first order equation,

 $x' = x^2$.

Show that $x = x^{(1)}(t) + x^{(2)}(t)$ is not a solution to the above equation $x' = x^2$.

(c) Now suppose $x^{(1)}(t)$ and $x^{(2)}(t)$ are solutions to the following linear, but nonhomogeneous, first order equation,

$$x' = x + 2.$$

Show that $x = x^{(1)}(t) + x^{(2)}(t)$ is not a solution to the above equation x' = x + 2. This x is actually a solution to a different equation, and what is that equation?

2. (Continuation of HW2 #3) In HW2, #3, we solved the below system of equations,

$$\begin{array}{rcl} x_1' &=& x_1 - 2x_2 \\ x_2' &=& 3x_1 - 4x_2 \end{array},$$

by writing this system as a single 2nd order equation and solving that 2nd order equation first.

- (a) Now forget about writing the system as a 2nd order equation. Just find the general solution to the above first order system x' = Ax directly by finding the eigenvalues and eigenvectors fo the coefficient matrix A.
- (b) Describe the behaviors of the solution as $t \to \infty$ and as $t \to -\infty$, (i.e. are solutions x(t) going to 0 or ∞ ?)
- (c) Draw a few trajectories of solutions in the x_1 - x_2 plane. Draw the trajectories parallel to the eigenvectors and also include a couple of trajectories that are not parallel to the the eigenvectors. Indicate the direction of flow by drawing an arrow on each trajectory.
- 3. (Continuation of HW3 #2)
 - (a) Find the solution to the above system of equations given the following initial condition

$$x(0) = \begin{bmatrix} -1\\ -2 \end{bmatrix}$$

- (b) Plot the point x(0) on the x_1 - x_2 plane.
- (c) Draw the trajectory of the solution to part (a) on the x_1 - x_2 plane for $t \in [0, \infty)$. Indicate the direction of flow.
- (d) Plot the point x(1) on your drawing in part (c).
- 4. (Rolling down a potential hill, a continuation of HW2 #6) In HW2, #6b, we wrote down the following system describing the motion of the particle

$$\begin{bmatrix} x'\\p' \end{bmatrix} = A \begin{bmatrix} x\\p \end{bmatrix}, \quad \text{where } A = \begin{bmatrix} 0 & 1/m\\2/5 & 0 \end{bmatrix}$$

- (a) Find the general solution, $\begin{bmatrix} x(t) \\ p(t) \end{bmatrix}$, to this system by finding the eigenvalues and eigenvectors of A. (The answer you get in the end should be the same as that in HW2 #6a.)
- (b) Suppose x(0) = 0 and p(0) = 0. Find the solution $\begin{bmatrix} x(t) \\ p(t) \end{bmatrix}$ subject to this initial condition.
- (c) Again x(0) = 0 and p(0) = m (i.e. initial velocity points to the right). Find the solution $\begin{bmatrix} x(t) \\ p(t) \end{bmatrix}$ subject to this initial condition.
- (d) What is the behavior of the solution in part (c) as $t \to \infty$? (That is, are solutions going to 0 or ∞ ?)
- (e) Let m = 1. Draw the trajectory of solution in part (c) for for $t \in [0, \infty)$ in the x-p plane and remember to indicate the direction of flow.
- 5. (Pendulum, a continuation of HW1 #8) In HW1 #8, we discussed that the equation of motion for a frictionless pendulum of bob mass m and rod length L is

$$\theta''(t) = -\frac{g}{L}\sin\theta.$$

This is a nonlinear equation, and we linearized it in HW1 by considering very small $\theta \approx 0$, in which case $\sin \theta \approx \theta$.

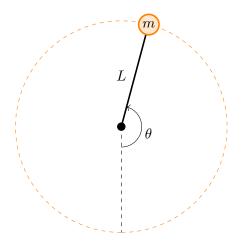
Now let's linearize it near a different point by considering $\theta \approx \pi$, so the bob of the pendulum is near the very top as pictured below. In this case, by considering a Taylor expansion of $\sin \theta$ around π , we get that $\sin \theta \approx -(\theta - \pi)$. Then we get that for $\theta \approx \pi$, we can approximate the above nonlinear equation by the following linearized equation

$$\theta''(t) = \frac{g}{L}(\theta - \pi).$$

Now let $\tilde{\theta} = \theta - \pi$, so when $\theta = \pi$, we have $\tilde{\theta} = 0$. Then the above equation becomes

$$\tilde{\theta}'' = \frac{g}{L}\tilde{\theta}.$$

For the rest of this problem, we only consider this very last linearized equation in θ .



(a) Denote by $\omega(t) = \frac{d\theta(t)}{dt}$. Write the above linearized equation in $\tilde{\theta}$ as a system of first order equations

$$\left[\begin{array}{c} \theta'\\ \omega' \end{array}\right] = A \left[\begin{array}{c} \theta\\ \omega \end{array}\right].$$

- (b) Find the general solution to the system in part (a) by finding the eigenvalues and eigenvectors of A.
- (c) Now set $\frac{g}{L} = 1$. Draw a few trajectories of solutions in the $\tilde{\theta}$ - ω plane. Draw the trajectories parallel to the eigenvectors and also include a couple of trajectories that are not parallel to the the eigenvectors. Indicate the direction of flow by drawing an arrow on each trajectory.
- (d) Again keep $\frac{g}{L} = 1$. Draw the trajectory determined by the initial condition $\tilde{\theta}(0) = 0$ and $\omega(0) = 1$ for $t \in [0, \infty)$ in the $\tilde{\theta}$ - ω plane. Then on the same plane, also draw the trajectory determined by the initial condition $\tilde{\theta}(0) = 0.3$ and $\omega(0) = 0$ for $t \in [0, \infty)$
- 6. Consider the following system

$$x' = \left[\begin{array}{cc} 2 & -1 \\ 3 & -2 \end{array} \right] x.$$

- (a) Find the general solution by finding the eigenvalues and eigenvectors of the coefficient matrix.
- (b) Draw a few trajectories of solutions in the x_1 - x_2 plane. Draw the trajectories parallel to the eigenvectors and also include a couple of trajectories that are not parallel to the the eigenvectors. Indicate the direction of flow by drawing an arrow on each trajectory.
- (c) Draw the trajectory determined by the initial condition $x_1(0) = 2$ and $x_2(0) = 1$ for $t \in [0, \infty)$ in the x_1 - x_2 plane.