Fourier Series Summary

Disclaimer: this quick summary is not a comprehensive list of everything you need to know about

Fourier series. See lecture notes for more comprehensive information.

1. Consider the vector space L?([—L, L]) with the inner product given by
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Consider the set
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2. (Orthogonality) Functions in the above set are pairwise orthogonal with respect to the above

inner product. We have
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3. (Completeness) If f € L?([—L, L]), then its Fourier series, which is given by
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converges to f(x) with respect to the L?-norm. In addition,
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4. (Pointwise and uniform convergence theorems) If f € PS([—L,L]), i.e. f, f' are piece-
wise continuous with finitely many discontinuities at which the left and right limits ex-
ists and are finite, then the Fourier series converges pointwise to f(x) at all points where
f(:r) is continuous. At a discontinuity zg, it converges to the midpoint of the jump, i.e.

(hm = f(@) +1im f(:c)) .

If f € PS([—L,L]) and f is continuous, then the Fourier series converges uniformly, and we
can integrate its Fourier series term by term. If f € PS([—L,L]) and f” is also piecewise

continuous, then we can differentiate its Fourier series term by term.



5. (Fourier cosine series) For f : [0, L] — R, its Fourier cosine series is
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6. (Fourier sine series) For f : [0, L] — R, its Fourier sine series is
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